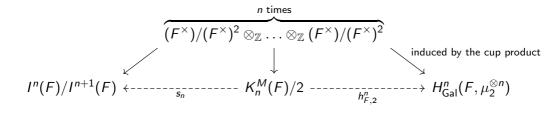
Quadratic forms and Galois cohomology The connection (Milnor's conjectures)

Jan Hennig

GRK2240 Retreat 2024

Description via symbols

Let F be a field with $char(F) \neq 2$.



with

$$s_n \colon K_n^M(F)/2 \to I^n(F)/I^{n+1}(F), \quad \{a_1, \ldots, a_n\} \mapsto (\langle a_1 \rangle - \langle 1 \rangle) \cdot \ldots \cdot (\langle a_n \rangle - \langle 1 \rangle)$$

Question

Are s_n and $h_{F,2}^n$ isomorphisms?

Proposition

The map $s_n \colon K_n^M(F)/2 \to I^n(F)/I^{n+1}(F)$ is well-defined and surjective.

Proof.

Consider the map $F^{\times} \times \ldots \times F^{\times} \to I^n(F)/I^{n+1}(F)$, $(a_1, \ldots, a_n) \mapsto (\langle a_1 \rangle - \langle 1 \rangle) \cdot \ldots \cdot (\langle a_n \rangle - \langle 1 \rangle)$. *n*-linear: $\langle a \rangle - \langle 1 \rangle + \langle b \rangle - \langle 1 \rangle = \langle ab \rangle - \langle 1 \rangle \mod I^2(F)$, because $\langle a \rangle + \langle b \rangle - \langle ab \rangle - \langle 1 \rangle = -(\langle a \rangle - \langle 1 \rangle)(\langle b \rangle - \langle 1 \rangle) \in I^2(F)$. Steinberg: $(\langle a \rangle - \langle 1 \rangle)(\langle 1 - a \rangle - \langle 1 \rangle) = \langle a(1 - a) \rangle - \langle a \rangle - \langle 1 - a \rangle + \langle 1 \rangle = 0$, because $\langle a \rangle + \langle 1 - a \rangle = \langle a + (1 - a) \rangle + \langle a(1 - a)(a + 1 - a) \rangle = \langle 1 \rangle + \langle a(1 - a) \rangle$. mod 2: $2\{a_1, \ldots, a_n\} = \{a_1^2, a_2, \ldots, a_n\} \mapsto \underbrace{(\langle a_1^2 \rangle - \langle 1 \rangle)}_{=\langle 1 \rangle - \langle 1 \rangle = 0} (\langle a_1 \rangle - \langle 1 \rangle) = 0$. surjective: I(F) is additively generated by Pfister forms $\langle a \rangle - \langle 1 \rangle$. Let F be a field with $char(F) \neq 2$.

Conjecture ('Milnor conjecture on norm residue symbol', 'Bloch-Kato conjecture for prime 2') The map $h_{F,2}^*$: $K_*^M(F)/2 \longrightarrow H_{Gal}^*(F, \mu_2^{\otimes *})$ is an isomorphism.

Conjecture ('Milnor conjecture on quadratic forms')

The map $s_* \colon K^M_*(F)/2 \longrightarrow \operatorname{gr}_I(W(F)) = \bigoplus_{n \in \mathbb{N}_0} I^n(F)/I^{n+1}(F)$ is an isomorphism.

Want to show: The map $h_{F,2}^n: K_n^M(F)/2 \to H_{Gal}^n(F, \mu_2^{\otimes n})$ is an isomorphism.

- 1) Induction on *n*: If the statement hold for all fields *F* and n < N then it holds for n = N.
- 2) $h_{F,2}^n$ is an isomorphism for certain 'big' fields F(i.e. F has no odd degree extensions and $K_n^M(F) = 2K_n^M(F)$)
- 3) Assume there is a field F for which $h_{F,2}^n$ is not an isomorphism, then there is an extension providing a counter example to the previous step.

Details: For any $\{a_1, \ldots, a_n\} \in K_n^M(F)$ there is a field extension $F \hookrightarrow F'$ such that $\{a_1, \ldots, a_n\} \in 2K_n^M(F')$ and $K_n^M(F')/2 \to H_{Gal}^n(F', \mu_2^{\otimes n})$ is not an isomorphism (take a big colimit to get a single field providing a counter example).

On the third step: how to find a good field extension

Suppose there is a field F for which $h_{F,2}^n$ is not an isomorphism.

Goal: for a symbol $\{a_1, \ldots, a_n\} \in K_n^M(F)$ find a field extension F' such that $\{a_1, \ldots, a_n\} \in 2K_n^M(F')$ and $K_n^M(F')/2 \to H_{Gal}^n(F', \mu_2^{\otimes n})$ is not an isomorphism.

The first part is easy: take $F' = F[X]/(X^2 - a_i)$ for any i = 1, ..., n. The problem is to control $K_n^M(F')/2 \to H_{Gal}^n(F', \mu_2^{\otimes n})$. Instead, use $F(Q_{\{a_1,...,a_n\}})$ with

$$Q_{\{a_1,\ldots,a_n\}} = \{q_{\langle\!\langle a_1 \rangle\!\rangle \otimes \ldots \otimes \langle\!\langle a_{n-1} \rangle\!\rangle}(x_0,\ldots,x_{2^{n-1}-1}) - a_n x_{2^{n-1}}^2 = 0\} \subseteq \mathbb{P}_F^{2^{n-1}}$$

i) Introduce motivic cohomology to study the behaviour of $K_n^M(F)/2 \to K_n^M(F')/2$ and $H_{Gal}^n(F, \mu_2^{\otimes n}) \to H_{Gal}^n(F', \mu_2^{\otimes n})$

- ii) Algebraic topological input: motivic Steenrod operations
- iii) Algebraic geometry input: identify a direct summand of the motive of $Q_{\{a_1,\ldots,a_n\}}$

Starting the proof of the Milnor conjecture on quadratic forms

Want to show: The map $s_n \colon K_n^M(F)/2 \to I^n(F)/I^{n+1}(F)$ is an isomorphism.

Known cases are:

- i) The map s_n is surjective for all $n \in \mathbb{N}$ (see before).
- ii) The maps $s_0: \mathbb{Z}/2\mathbb{Z} \to W(F)/I(F)$ and $s_1: F^{\times}/(F^{\times})^2 \to I(F)/I^2(F)$ are isomorphisms
- iii) The map s_2 is an isomorphism (by writing down an inverse)

Using 'standard' facts about quadratic forms (Arason-Pfister Hauptsatz, ...) one can show:

Proposition

$$s_n(\{a_1,\ldots,a_n\})=s_n(\{b_1,\ldots,b_n\}) \quad \Leftrightarrow \quad \{a_1,\ldots,a_n\}=\{b_1,\ldots,b_n\}\in K_n^M(F)/2$$

This does not show the injectivity of s_n . It shows injectivity for pure symbols.

Proof strategy of the Milnor conjecture on quadratic forms

Have: Injectivity of $s_n \colon K_n^M(F)/2 \to I^n(F)/I^{n+1}(F)$ on pure symbols

Idea: Find a field extension F' such that $\alpha \in K_n^M(F)/2$ becomes a pure symbol in $K_n^M(F')/2$. Observation: By going to $F(Q_{\{a_1,\ldots,a_n\}})$ the symbol $\{a_1,\ldots,a_n\}$ vanishes. Key: The kernel $K_n^M(F)/2 \to K_n^M(F(Q_\alpha))/2$ is a s nice as possible.

Proposition

If $\alpha = \{a_1, \ldots, a_n\} \neq 0 \in K_n^M(F)/2$, then

$$\ker\left({\mathcal{K}^M_n(F)/2} \to {\mathcal{K}^M_n(F(Q_\alpha))/2}\right) = \mathbb{Z}/2\mathbb{Z} \cdot \alpha.$$

For
$$\alpha = \alpha_1 + \ldots + \alpha_k \in K_n^M(F)/2$$
 take $F' = F(Q_{\alpha_1})(Q_{\alpha_2}) \ldots (Q_{\alpha_i})$ such that

$$\alpha \neq 0 \in K_n^M(F')/2 \text{ and } \alpha = 0 \in K_n^M(F'(Q_{\alpha_{i+1}}))/2.$$

Proposition

If $\alpha = \{a_1, \ldots, a_n\} \neq 0 \in K_n^M(F)/2$, then

$$\ker\left(\mathcal{K}_n^M(F)/2 \to \mathcal{K}_n^M(F(Q_\alpha))/2\right) = \mathbb{Z}/2\mathbb{Z} \cdot \alpha.$$

The maps $\mathcal{K}_n^M(\mathcal{F})/2 \to \mathcal{K}_n^M(\mathcal{F}(\mathcal{Q}_\alpha))/2$ already played a crucial role in the previous proof.

- i) Describe the kernel in terms of a motivic cohomology group.
- ii) Again use the splitting of the motive of Q_{α} .

1) The connection between quadratic forms and Galois cohomology has the form

$$I^{n}(F)/I^{n+1}(F) \cong K_{n}^{M}(F)/2 \cong H_{\text{Gal}}^{n}(F, \mu_{2}^{\otimes n}),$$

2) These objects have a nice description via symbols modulo a single relation in degree 2

$$K_n^M(F) = (F^{\times})^{\otimes n} / \langle \ldots \otimes a \otimes 1 - a \otimes \ldots \rangle,$$

3) The proofs require heavy, but interesting, machinery (e.g. motivic cohomology).