Marcus Zibrowius Jan Hennig 11.12.2024

Topologie I Blatt 8

So fern nicht weiter spezifiziert arbeiten wir in der Kategorie der lokal kompakt erzeugten, schwach Hausdorff Räume und bezeichnen diese Kategorie mit **Top**, bzw. der punktierten Version **Top**_{*}.

1 | Stegreiffragen: Sequenzen

Alle Fragen sollten lediglich eine kurze Antwort benötigen:

- (a) Wahr oder falsch: Ist $\{*\} \to A \to B$ eine exakte Sequenz in \mathbf{Top}_* , so ist $A \to B$ injektiv.
- (b) Wahr oder falsch: Ist $A \to B \to \{*\}$ eine exakte Sequenz \mathbf{Top}_* , so ist $A \to B$ surjektiv.
- (c) Wahr oder falsch: Ist (X, A) ein Paar mit X kontrahierbar, so gilt $\pi_{i+1}(X, A) \cong \pi_i(A)$ für $i \geq 0$.

2 | Homotopiegruppen von Kolimiten

Sei $* \in X_0 \subseteq X_1 \subseteq X_2 \subseteq \dots$ eine Folge von Räumen in **Top***.

- (a) Zeigen Sie, dass für $K \subseteq \operatorname{colim}_i X_i$ kompakt ein $n \in \mathbb{N}_0$ existiert mit $K \subseteq X_n$. (Hinweis: Diese Aussage gilt für T_1 -Räume, d.h. Punkte sind abgeschlossen)
- (b) Zeigen Sie, dass $\operatorname{colim}_i \pi_n(X_i, *) \to \pi_n(X, *)$ ein Isomorphismus ist.
- (c) Berechnen Sie $\pi_n(S^{\infty})$.
- (d) Berechnen Sie $\pi_n(\mathbb{RP}^{\infty})$.
- (e) Berechnen Sie $\pi_n(\mathbb{CP}^{\infty})$.

3 | 4-Lemma, aber ohne Gruppenstruktur

Sei $f:(X,A) \to (Y,B)$ eine Abbildung von Paaren. Betrachte das folgende kommutative Diagramm von exakten Sequenzen. Die vertikalen Abbildungen sind die von f induzierten $(f_*: \pi_i(-) \to \pi_i(-))$.

$$\pi_1(A, a) \longrightarrow \pi_1(X, a) \longrightarrow \pi_1(X, A, a) \longrightarrow \pi_0(A) \longrightarrow \pi_0(X)$$

$$\downarrow^{\beta} \qquad \qquad \downarrow^{\gamma} \qquad \qquad \downarrow^{\delta} \qquad \qquad \downarrow^{\varepsilon}$$

$$\pi_1(B, f(a)) \longrightarrow \pi_1(Y, f(a)) \longrightarrow \pi_1(Y, B, f(a)) \longrightarrow \pi_0(B) \longrightarrow \pi_0(Y)$$

- (a) Seien β , δ surjektiv und ε injektiv. Zeigen Sie, dass γ surjektiv ist.
- (b) Seien β , δ injektiv und α surjektiv für alle $a \in A$. Zeigen Sie, dass γ injektiv für alle $a \in A$ ist.
- (c) Finden Sie ein Beispiel für ein kommutatives Diagramm von punktierten Räumen von folgender Form

$$\begin{array}{ccccc}
A & \longrightarrow & B & \longrightarrow & C & \longrightarrow & D & \longrightarrow & E \\
\downarrow \alpha & & & \downarrow \gamma & & \downarrow \delta & & \downarrow \varepsilon \\
A' & \longrightarrow & B' & \longrightarrow & C' & \longrightarrow & D' & \longrightarrow & E'
\end{array}$$

sodass beide Zeilen exakte Sequenzen von punktierten Mengen sind, α , β , δ , ε Isomorphismen, aber γ weder injektiv noch surjektiv ist.